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Abstract As part of an effort to establish a structure–

activity relationship of diamidines against African trypano-

somes, a quantitative correlation between molecular structure

and anti-trypanosomal activity of 2-phenylbenzofuran

derivatives was attained using classical quantitative struc-

ture–activity relationship (QSAR) descriptors and 3D

similarity indices. A good model was obtained on the basis of

classical descriptors; however, the model derived using

descriptors based on similarity indices neither complemented

the classical descriptors nor were significantly predictive. The

best QSAR model with chemical descriptors that showed

good correlative and predictive ability with r = 0.91,

r2 = 0.82, and rcv
2 = 0.80 was developed using stepwise

multiple linear regression analysis (MLR) and a comparable

partial least squares analysis (PLS) model with rcv
2 = 0.79

was also obtained. The QSAR models revealed that a sub-

stituent steric descriptor (Verloop B1 parameter) and

geometrical (moment of inertia 3 length) and hydrophobic

(log P) descriptors of the whole molecule have significant

impact on anti-trypanosomal activity of the compounds. The

best QSAR models were validated by the leave one out

technique. To further confirm the predictive power of the

models, an external set of molecules was used which was not

part of the training set. The high agreement between experi-

mental and predicted inhibitory values, obtained in the

validation procedure, indicates the good quality of the derived

QSAR models. In addition to QSAR analysis Lipinski’s rule

was also applied to the series under consideration and newly

designed molecules in order to check the drugability of the

compounds; no violation of this rule was found. Hence

2-phenylbenzofuran has tremendous potential to yield orally

active anti-trypanosomal agents.
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Human African trypanosomiasis

Introduction

Protozoal infections such as malaria, trypanosomiases, and

leishmaniases are a major health menace and are coincident

with much of the world’s most acute poverty in developing

countries with estimated worldwide deaths of over one

million people per year [1]. According to the World Health

Organization (WHO) [2], more than 60 million people are

at risk of trypanosomiases, with an estimated 0.3–0.5

million infected people out of which only a small number

are subject to active surveillance or have access to health

centers where reliable diagnosis and treatment are available

[3].

Human African trypanosomiasis (HAT), also called

African sleeping sickness, is a re-emerging infectious vec-

tor-borne parasitic disease that is found only in the

intertropical regions of Africa because of the ecology of the

insect vector. Although there are many species of trypan-

osomes, only two, belonging to the brucei group, are

infectious to humans: Trypanosoma brucei gambiense,

found in West and Central Africa, leads to a chronic form of

the disease, whereas Trypanosoma brucei rhodesiense,

found in East and Central Africa, leads to a more virulent

and acute condition. The disease is caused by infection with

haemoflagellates of the Trypanosoma brucei subspecies,
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which are introduced into the human bloodstream via the

bite of infected tsetse flies [4] of the genus Glossina. After

an insect bite, parasites replicate at the site of infection,

producing a local inflammatory reaction, then spread to the

regional lymph nodes. From there, the disseminate

throughout the host, eventually becoming established in the

central nervous system (CNS). African sleeping sickness is

currently classified as a ‘‘neglected disease’’ because there

are no effective and safe therapies; the treatment, once the

parasite has crossed the blood–brain barrier, relies on the

use of two clinical medicines that are melarsoprol and

eflornithine [5, 6]. However, these drugs have several side

effects like myocardial damage, hypertension, exfoliative

dermatitis, and reactive encephalopathy, and in addition,

resistance has been reported [7–12]. Therefore, there is

clearly a vital need for a new generation of drugs [13].

The synthesis of the aromatic diamidines pentamidine

and furamidine (Fig. 1) and the discovery of their broad

antiparasitic activity are of interest for the development of

anti-trypanosomal compounds [14–18], but the mechanism

of action of the drugs is not well understood [19]. It has

been postulated that diamidines may exert their biological

activity by binding to the minor groove of DNA at the

AT-rich site which leads to the inhibition of the DNA-

dependent enzyme or direct inhibition of transcription

[20–25]. Therefore the DNA minor groove has emerged as

an important target site for the development of synthetic

therapeutic agents. Although pentamidine has had signifi-

cant clinical success, its toxicity, lack of oral availability,

emergence of pentamidine-resistant organisms, and use of

furamidine as an alternative to pentamidine emphasize the

essential need to develop additional drugs for the treatment

of HAT.

Over the last 15 years there has been a revival of drug

research and development regarding neglected parasitic

diseases, and a number of drug development projects

are currently ongoing. However, discovering new lead

compounds and optimizing existing lead structures with

anti-trypanosomal activity remain a crucial step to sustain

the progress achieved to date. The use of quantitative

structure–activity relationships (QSAR), since their advent

in 1962, has become increasingly helpful in understanding

many aspects of chemical–biological interactions in drug

and other scientific research [26]. With a properly designed

set of congeners, carefully tested in almost any biological

system, it has become easy to derive a QSAR by a steadily

increasing number of computerized approaches. QSAR

models, mathematical equations relating chemical structure

to their biological activity, give information that is useful for

drug design and medicinal chemistry [27]. An exhaustive

literature review revealed that very few attempts have been

made to build a QSAR model in the field of HAT, exem-

plified by the work of Athri et al. [28]; hence we endeavored

to develop a robust QSAR model for 2-phenylbenzofu-

ran derivatives and use it in the design of some new

orally bioavailable anti-trypanosomal compounds.

The objective of the present multiple QSAR investiga-

tions was to develop 3D QSAR models based on similarity

indices and 2D QSAR models based on classical descrip-

tors. Firstly, 3D QSAR models derived from similarity data

using multiple linear regression analysis (MLR) are dis-

cussed. A major benefit of 2D compared to 3D QSAR

methods is that the former neither requires conformational

search nor structural alignment; moreover, 2D QSAR

methods are easily automated and can even be adapted to

the task of database searching or virtual screening [29].

This consideration led us to further develop MLR and

partial least squares analysis (PLS) models with classical

descriptors.

Results and discussion

For all the compounds listed in Table 10, the shape, elec-

tronic, refractivity, lipophilicity, and combined similarity

matrices were computed. Each matrix was subjected to

PCA. Table 1 lists the seven principal components (PCs)

having a variation up to 90%. MLR analysis was performed

with these seven PCs derived from the similarity matrix.

Out of these seven PCs only four PCs (PC1, PC2, PC3, and

PC6) were involved in the model development (Eq. 1).

Although the r2 value of Eq. 1 was considerable, the high

s value and low f and rcv
2 values suggest a poor predictivity

of the developed model.

Y ¼ �0:219� X1 þ 0:490� X2 � 0:283� X3

� 0:317� X6 þ 1:369

s value ¼ 0:50; f value ¼ 17:40; r ¼ 0:82;

r2 ¼ 0:67; r2
cv ¼ 0:54

ð1Þ
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Fig. 1 Structure of key dicationic anti-trypanosomal agents
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where X1 = principal component 1, X2 = principal com-

ponent 2, X3 = principal component 3, and X6 = principal

component 6.

All our efforts to develop a predictive model from PCs of

similarity data did not yield a robust QSAR model so we

concluded that the data under consideration are unsuitable

for generating a QSAR from PCs of similarity matrices.

Hence we decided to perform an MLR analysis using the

original set of physiochemical parameters (classical

descriptors) as independent variables and the inhibitory

activity of anti-trypanosomal agents as dependent variables.

Initial regression analysis with more than 250 descriptors

showed the poor internal predictive ability of the developed

model, as revealed by a low rcv
2 value (-0.298), that could

be due to a very high number of descriptors. So to find a set

of most significant descriptors, data reduction was carried

out employing the technique described in the ‘‘Materials

and methods’’ section. The regression model developed

using the three most significant descriptors obtained after

data reduction was poor (Eq. 2) as revealed by its low r, r2,

rcv
2 , s, and f values.

Y ¼ 2:330� X1 � 0:519� X2 � 0:466� X3 � 0:294

s value ¼ 0:501; f value ¼ 26:374; r ¼ 0:818;

r2 ¼ 0:669; r2
CV ¼ 0:467 ð2Þ

where X1 = Verloop B1 (substituent 4), X2 = moment of

inertia 3 length (whole molecule), X3 = log P (whole

molecule).

According to general statistical standards, only r2 values

of at least 0.80 can be accepted [30]; the r2 value for Eq. 2

is 0.669. So to further improve the quality of the model we

decided to work in two areas: first, the confirmation of the

statistical quality of the descriptors entering the model;

second, the identification of outliers.

Out of the three descriptors selected in Eq. 2, two

showed high correlation with the biological activity

(Table 2), whereas the moment of inertia 3 length shows

moderate correlation (0.357) with biological activity;

however, the intercorrelation coefficients of all three

parameters were very small (\0.16), so the combination of

the three descriptors can provide a good fit. The t test

values, jackknife standard error (SE), and covariance SE

values (Table 3) were significant for all three descriptors

which confirms the importance of each selected descriptor.

After confirming the statistical quality of the descriptors

we attempted to find the possible outliers. Five outliers (3,

13, 23, 28, and 42) were identified on the regression graph

of the recalculated equation because they were plotted far

away from the regression line; this disparity means that

their observed biological activity was higher than that

predicted by the QSAR model, or may point toward

experimental or even a typographical error. One by one

Table 1 Total variance and eigenvalues of PCs from similarity

matrix

Principal

components

Total variance

explained

Eigenvalue

PC1 0.319173 70.218

PC2 0.530886 46.577

PC3 0.647551 25.6663

PC4 0.742101 20.8011

PC5 0.816368 16.3387

PC6 0.867206 11.1842

PC7 0.89623 6.38542

Table 2 Correlation matrix of

the most relevant descriptors

used in the QSAR development

sub. substituent

Verloop B1

(sub. 4) X1
Moment of Inertia 3 length

(whole molecule) X2
Log P
(whole molecule) X3

Verloop B1 (sub. 4) X1 1

Moment of inertia 3 length

(whole molecule) X2
0.166223 1

Log P (whole molecule) X3 -0.052886 0.164208 1

Log(1/IC50) 0.475182 -0.357948 -0.733344

Table 3 Jackknife SE, covariance SE, and t test values for the selected descriptors

Descriptors Jackknife SEa Covariance SEb t valuec

Verloop B1 (sub. 4) X1 0.368282 0.460297 4.7883

Moment of inertia 3 length (whole molecule) X2 0.0318809 0.141784 -3.59992

Log P (whole molecule) X3 0.0143173 0.0650384 -7.30993

a An estimate of the SE of each regression coefficient derived from a jackknife procedure on the final regression
b Gives an estimate of the SE of each regression coefficient derived from the covariance matrix
c Measures the significance of each variable included in the final model

Structure–activity relationship analysis of cationic 2-phenylbenzofurans 1071

123



deletion of the outliers resulted in the formation of the

following four equations (3–6):

Y ¼ 2:612� X1 � 0:678� X2 � 0:492� X3 � 0:158 ð3Þ

Y ¼ 2:751� X1 � 0:607� X2 � 0:477� X3 � 0:717 ð4Þ

Y ¼ 2:422� X1 � 0:635� X2 � 0:491� X3 þ 0:079 ð5Þ

Y ¼ 2:840� X1 � 0:568� X2 � 0:487� X3 � 0:981 ð6Þ

where X1 = Verloop B1 (sub. 4), X2 = moment of inertia 3

length (whole molecule), and X3 = log P (whole

molecule).

The statistics of these equations are listed in Table 4.

The statistics of Eq. 6 were better than those of Eqs. 3–5

as revealed by a high rcv
2 value of 0.80 that explains

80% of the variance in biological activity. The lower

value of s (0.36) and the high value of f (54.90) indicate

a good internal predictive ability of the developed

model. The model also exhibited a square correlation

coefficient of 0.82 and a high correlation coefficient of

0.91 between descriptors and anti-trypanosomal activity.

Because QSAR based on PCs from similarity matrices

did not yield promising results, the QSAR model with

high statistical significance (Eq. 6) developed using the

original classical descriptors was selected for further

analysis.

To further confirm the soundness and predictive ability

of the model, PLS analysis was performed using the same

data set. For a well-defined problem, both MLR and PLS

should generate comparable results [31]. The results of the

PLS as shown in Eq. 7 were also evaluated on the basis of

rcv
2 of the model.

Y ¼ 2:667� X1 � 0:483� X2 � 0:514� X3 � 0:852

r2
CV ¼ 0:7933; fraction of variance explained ¼ 0:825

ð7Þ

where X1 = Verloop B1 (sub. 4), X2 = moment of inertia 3

length (whole molecule), and X3 = log P (whole

molecule).

The external predictive ability of QSAR models (MLR

and PLS) was also checked using test sets of compounds

that were excluded during the model development. All the

compounds in the test set were treated in a manner anal-

ogous to the compounds in the training set. The observed

and predicted values of the training and test set of com-

pounds (Tables 5, 6) show that the prediction using the

derived QSAR equation was very close to the observed

values. Figures 2 and 3 plot the observed activity versus

predicted activity for the training and test set compounds.

It is clear from the r, r2, rcv
2 , s, and f values that the 2D

QSAR analysis (MLR and PLS) performed using the ori-

ginal classical descriptor is statistically better than the

QSAR analysis using similarity indices. Thus, these results

demonstrate that both MLR and PLS are highly competi-

tive QSAR techniques as applied to this data set.

Equations 6 and 7 indicate that Verloop B1, moment of

inertia 3 length, and log P are the main independent factors

determining the biological activity. The negative coeffi-

cients of the log P and moment of inertia 3 length show

that decreasing the log P and moment of inertia 3 length

values can enhance the anti-trypanosomal activity, whereas

the positive coefficient of the Verloop B1 shows that

increasing the Verloop B1 (sub. 4) values can enhance the

anti-trypanosomal activity. The two parameters log P and

moment of inertia 3 length are for the whole molecule,

whereas the Verloop B1 parameter is for the substituent R40.

The selected parameter log P, which plays a fundamental

role in biochemical processes and influences the fate of a

molecule in the binding environment, exhibits the largest

negative correlation (-0.733) with biological activity.

Thus, a substituent which decreases the hydrophobicity

leads to a better fit of the molecule. Probably, the com-

pounds under consideration penetrate deeply into the

groove and fit snugly between the walls of the groove.

Their amidines form hydrogen bonds with a carbonyl

functionality present on the thymine and/or imine group of

adenine on the edges of the bases on the floor of the

groove. Hence, the hydrophilic substituents in the molecule

influence the interaction between the aromatic diamidine

and the minor groove of the double helix DNA and

selective inhibition of kinetoplast DNA synthesis.

The Verloop parameters [32–34] are a set of multidi-

mensional steric descriptors defining a box that can be used

to characterize the shape and volume of the substituent.

These parameters are very important in explaining the

steric influence of substituents on the interaction between

organic compounds and macromolecular drug receptors.

The Verloop B1 parameters describe the width of the

substituent in the direction perpendicular to the length of

the substituent. In the present study the Verloop B1 of

substituent R40 exhibits the second highest positive corre-

lation (0.475) with biological activity which means that a

larger volume of the substituent at R40 is important for a

favorable interaction with the receptor. For a chemical

compound to interact with an enzyme or a receptor it has to

approach and then bind to a binding site. The bulk, size,

and shape of the compound have an influence on this

Table 4 Details of equations obtained after deletion of outliers

Outliers Equation r r2 rcv
2 s value f value

3 and 13 (3) 0.86 0.75 0.60 0.43 37.055

3, 13, and 23 (4) 0.88 0.77 0.73 0.41 42.26

3, 13, 23, and 42 (5) 0.88 0.79 0.75 0.39 43.99

3, 13, 23, 42, and 28 (6) 0.91 0.82 0.80 0.36 54.90
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process because a bulky substituent either acts like a shield

and hinders the ideal interaction between the chemical and

receptor, or it may help to orientate a drug properly for

maximum receptor binding and increase activity. Increas-

ing the shape and volume of the substitutent at the R40

position orients the molecule in such a way that there is

maximum binding and hence increases the anti-trypanos-

omal activity of the phenylbenzofuran.

The negative contribution of the moment of inertia 3

length, which is a more advanced structural molecular

descriptor derived from the three-dimensional coordinates

of the atomic nuclei and atomic masses and/or atomic radii

in the molecule, to the biological activity shows that an

overall substitution pattern that decreases the shape and

mass distribution of the whole molecule leads to an

increase in anti-trypanosomal activity.

Table 5 Actual and predicted

activity of training set

compounds

Compounds Actual activity (lM) Predicted activity (lM) Residuals values

MLR PLS MLR PLS

2 0.9 1.310 1.22 -0.41 -0.32

4 0.6 0.093 0.009 0.50 0.59

5 0.21 -0.015 -0.029 0.22 0.23

6 0.91 1.135 1.06 -0.22 -0.15

7 0.64 0.946 0.87 -0.30 -0.23

8 1.61 1.693 1.71 -0.08 -0.10

9 0.32 0.210 0.23 0.10 0.087

11 2.15 2.469 2.43 -0.31 -0.28

12 0.85 1.119 1.06 -0.26 -0.21

14 1.67 1.629 1.66 0.04 0.006

15 0.27 0.049 0.08 0.22 0.181

16 0.47 0.795 0.84 -0.32 -0.37

17 2.22 1.925 2.00 0.29 0.21

18 1.04 0.522 0.58 0.51 0.45

19 0.9 1.223 1.30 -0.32 -0.40

21 1.55 1.36 1.29 0.18 0.25

22 2.39 2.01 1.98 0.37 0.40

24 1.63 1.44 1.39 0.18 0.23

26 2.52 2.29 2.32 0.22 0.19

27 1.13 1.58 1.55 -0.45 -0.42

29 2.69 2.37 2.41 0.31 0.27

31 1.56 1.37 1.44 0.18 0.11

32 2.69 2.69 2.65 -0.006 0.03

33 1.67 1.63 1.56 0.03 0.10

34 2.09 2.01 1.97 0.07 0.11

35 2.3 1.87 1.90 0.42 0.39

36 -0.002 0.47 0.48 -0.47 -0.48

37 0.64 0.71 0.80 -0.07 -0.16

38 2.52 2.40 2.42 0.11 0.098

39 1.26 1.14 1.10 0.11 0.15

41 1.95 2.48 2.51 -0.53 -0.56

42 1.76 1.64 1.66 0.11 0.09

44 2.39 2.56 2.54 -0.17 -0.15

45 2.04 1.32 1.27 0.71 0.76

46 1.95 1.93 1.91 0.010 0.039

47 1.53 1.80 1.85 -0.27 -0.32

48 -0.7 0.29 0.33 -0.99 -1.03

49 1.08 0.81 0.88 0.26 0.19
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During analysis of the results we noticed that there is a

mismatch between the steric and geometrical descriptors,

because a positive contribution of Verloop B1 accounts for

the presence of bulkier groups at the R40 position, whereas

the negative contribution of a geometrical descriptor

(moment of inertia 3 length) accounts for decreasing the

bulk of the whole molecule. These findings clearly suggest

that while designing new molecules care must be taken so

that only those functional groups that have optimal width

limits can be substituted at R40 position to facilitate the

interaction with the receptors. However, these functional

groups should not exert any steric effect on the orientation

of the whole molecule that may cause a negative influence

on the proper orientation of the molecule towards the

receptor site. Therefore, bulk and shape of the compounds

should be increased to an optimal level.

This study clearly indicates that optimum bulkier groups

and hydrophilic substituents increase the anti-trypanosomal

activity of the benzofuran. This fact is clear from diamidine

compounds 26, 29, 32, and 38 of the series, which had low

values of log P and moment of inertia 3 length and high

values of the Verloop B1 parameter (Table 7) and exhibit

anti-trypanosomal activity equal or superior to that of

pentamidine (IC50 = 3 lM) owing to the presence of an

optimum bulky group at the R40 position as compared to

other compounds in the series, whereas the presence of

di(N-isopropyl)amidines and diimidazolines, which are

bulkier than diamidines, leads to activity less than pent-

amidine. Diamidines 29 and 32, bearing methoxy and

hydroxy groups in the 20-position of the phenyl ring, were

the most potent compounds in the series, with anti-try-

panosomal IC50 values of 2 lM. Not only the size of the

groups, but also their position is important for activity. The

most active compounds of the series 26, 29, and 30 have an

amidine group at R1; changing the position of amidine

from R1 to R2 and increasing the bulk by replacing the

amidine with (N-isopropyl)amidines drastically reduces the

activity as illustrated by compound 48. The most favorable

position, which gives maximum activity, is the presence of

an amidine group at 5.

After analysis of these results we are in a position to

propose that steric, geometrical, and hydrophobic factors

are the important determinants for anti-trypanosomal

activity of the drugs binding to the AT sequence of the

Table 6 Actual and predicted activity of test set compounds (MLR

and PLS)

Compounds Actual

activity (lM)

Predicted activity (lM)

MLR PLS

1 2.52 2.49 2.41

10 1.1 0.73 1.40

20 2.52 2.43 2.33

25 2 2.46 2.12

30 0.8 0.89 0.57

40 1.3 1.37 1.39
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DNA minor groove. The anti-trypanosomal activity of

2-phenylbenzofuran derivatives increases upon addition of

an optimal bulkier group, which helps the molecule to

orient in a manner to match the width of the DNA minor

groove (minor groove widths in A:T regions have been

reported in the range of 3–4 Å [35]). This complementary

structure enhances the surface contacts and aligns the

groups for favorable interactions with DNA. The QSAR

model reveals that the presence of lipophilic groups on the

molecules prevents the formation of hydrogen bonds with

the AT base pair on the floor of the DNA minor groove,

resulting in reduced anti-trypanosomal activity. Hence, the

presence of a hydrophilic group facilitates the anti-try-

panosomal activity. So on the basis of the present study

new compounds were designed with higher potency than

the existing benzofurans.

Design of new compounds with high predicted

anti-trypanosomal activity

On the basis of the above discussion about the three

parameters contributing to anti-trypanosomal activity in

Eq. 6, we found that three parameters are very important

and exhibit greater correlation with -logIC50; moreover,

one of them relates to substituent R40 whereas the other two

relate to the structure of the whole molecule. Therefore, by

modifying the R40 substituents to improve the values of the

three parameters, we have theoretically designed five new

compounds 50–54 with higher anti-trypanosomal activities

(in the range 3.16–3.80) than the given 2-phenylbenzofuran

derivatives. The structures of the five new compounds and

the values of the three parameters calculated using

the same methods are given in Table 8, along with the

-logIC50 values predicted using Eq. 6. It is clear from the

table that the R40 structure is modified to reduce its moment

of inertia 3 length and log P value and to increase the

Verloop B1 value. It is apparent from the structures of the

new compounds that replacement of the substituted phenyl

ring at the 2-position of the benzofuran nucleus (Fig. 4)

with other bulkier groups enhances the activity as does the

presence of an amidine group (cf. 53 and 54 versus 50–52);

therefore the presence of the amidine group is necessary for

anti-trypanosomal activity. The values of the three

parameters suggest that all the five compounds were suc-

cessfully designed according to the results obtained from

the present QSAR study. Such results further indicate that

our model established using the QSAR studies is significant

and predictive, and that the consideration of the molecular

design is also reasonable.

Lipinski rule of five

Lipinski’s ‘‘rule of five’’ is a heuristic approach for pre-

dicting drug-likeness stating that molecules with a

molecular weight greater than 500, log P greater than 5,

more than 5 hydrogen bond donors, and more than 10

hydrogen bond acceptors have poor absorption or perme-

ation [36]. This rule describes only the molecular

properties related to the pharmacokinetics of molecules,

i.e., the absorption, distribution, metabolism, and excretion

(ADME) of bioactive compounds in a higher organism.

Table 7 Calculated values of various descriptors included in the

model development

Compounds Verloop B1 Moment of

inertia 3 length

Log P

2 2.12 3.05 4.12

4 1.99 3.28 5.58

5 1.65 2.97 4.17

6 2.10 3.24 4.16

7 1.99 3.02 4.16

8 1.87 3.13 1.79

9 1.90 3.88 4.12

11 2.11 2.94 1.79

12 2.12 3.37 4.12

14 1.87 3.22 1.79

15 1.87 4.03 4.12

16 1.81 3.57 2.75

17 2.11 4.13 1.54

18 2.13 4.68 3.87

19 2.10 4.50 2.50

21 2.13 3.27 3.84

22 2.11 3.16 2.46

24 2.14 3.40 3.55

26 2.15 3.70 1.54

27 2.41 4.23 3.87

29 2.22 3.87 1.54

31 2.14 4.42 2.50

32 2.10 2.75 1.51

33 2.24 3.33 3.84

34 2.08 3.02 2.46

35 1.88 3.09 1.51

36 1.91 3.71 3.84

37 1.78 3.81 2.46

38 2.15 3.46 1.54

39 2.13 3.61 3.87

41 2.24 3.77 1.54

43 2.12 3.86 2.50

44 2.10 2.99 1.51

45 2.15 3.43 3.84

46 2.07 3.11 2.46

47 1.92 3.40 1.51

48 1.91 4.02 3.84

49 1.80 3.73 2.46
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Table 8 Structure, predicted biological activity, and calculated values of various descriptors of designed compounds

Structures of the designed molecules Verloop B1 (sub. 4) Moment of inertia

3 length (whole molecule)

Log P
(whole molecule)

Biological

activity (lM)

O

O

NH

NH2

OO

CH3

 50

2.273 3.477 0.575 3.16

O

O

NH

NH2

OO

CH3

51

2.200 3.360 0.232 3.20

O

O NH

NH2

O OH

52

2.127 2.954 0.201 3.25

O

O NH

NH2

O OH

NH2

NH

53

2.274 3.271 -0.622 3.86

O

O NH

NH2

O OH

NH

NH2

54

2.126 3.187 -0.622 3.52
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There is no consideration of the pharmacodynamic

aspects of the molecules, which deal with drug action on

the body or on microorganisms and other parasites within

or on the body. The parameters included in Lipinski’s rule

of five were calculated for the series under consideration

and the designed compounds and are summarized in

Table 9. The results clearly indicate that there is no

violation of Lipinski’s rule and it is highly likely that all

the designed compounds will have favorable pharmaco-

kinetics profiles.

Conclusion

The DNA minor groove is an important target site for

enzymes and transcription control proteins, and it has been

a particularly attractive target site for the development of

synthetic agents for therapeutic purposes and for sequence-

selective recognition of DNA. All the results discussed

indicate that PCA based on similarity matrices and classi-

cal descriptors does not give significant results whereas by

using original classical steric, geometrical, and hydropho-

bic descriptors a very robust model has been derived that

also possesses very powerful predictive ability. The model

was validated by standard statistical means to check how it

reproduces and explains the differences in the experimen-

tally known activity data. Detailed structural investigation

revealed that the anti-trypanosomal activity is predomi-

nantly explained by the substituent size, shape, and

hydrophobicity of the whole molecule and provided

insights into how modulation of the steric bulkiness of the

substituents and hydrophobicity of whole molecule could

be useful to optimize the anti-trypanosomal activity and

hence improve the observed biological activity. Thus, the

model reported in the present study will be helpful in the

development of new compounds with improved efficacy

and oral bioavailability.

Materials and methods

Biological activity data and 3D structure generation

The structures and anti-trypanosomal activities of 49

2-phenylbenzofuran derivatives described previously [37]

(Table 10) were used for the present study. The trypanos-

omal inhibitory activity of the compounds in the series

were expressed as log(1/IC50) values to obtain linear

relationships in equations, where IC50 refers to experi-

mentally determined micromolar (lM) concentration of the

compounds required to inhibit 50% of the trypanosomal

activity. The structures of all the molecules were drawn

using the TSARTM 3D version 3.3 software and were

converted into high quality 3D structures employing

CORNIA which is a rule-based method developed by

Gasteiger, Rudolph, and Sadowski [38] for the conversion

of 2D molecules into their 3D structure. The created 3D

models were cleaned up and subjected to energy minimi-

zation using the COSMIC module of TSAR. The COSMIC

force field calculates molecular energies by summing the

bond length, bond angle, torsion angle, van der Waals,

and coulombic terms for all appropriate sets of atoms.

The lowest energy structure of each molecule was used

to calculate the molecular descriptors. Charges were

calculated using the derive charge -2 option, which is an

empirical method. It calculates charges considering the

inductive effect in the saturated molecule via the atomic

electronegativity, polarizability, and Hückel molecular

orbital calculations for p systems through the appropriate

coulomb and resonance integrals.

Data set preparation

In the original series the 2-phenylbenzofuran moiety was

taken as a template with six substituents R1, R2, R3, R4, R5,

and R6 each attached to this template by a single bond

(Fig. 4). Certainly there are many ways to represent a

molecule as a template with many substituents. So after

some experimenting we chose a substituent-defining

scheme in which the number of substituents was four as

depicted in Fig. 4. The substituents were defined using the

define substituent option in the TSAR worksheet’s toolbar.

All the molecules had the same number of substituents and

all the substituents were numbered R1, R2, R3, and R40

(Table 10), where the substituted phenyl ring at the 2

O

R
1

R
2

R
3

R
4

R
5

R
6

5

6
7

2

2'

4'

5'

R1, R5 = H, Am, i-PrAm, Im, BzIM 
R2, R6 = H, Am, i-PrAm, Im 

R3, R4 = H, OCH3, OH 
(Substitutions used in original series)

                    After defining substituents

R4′

The phenyl ring at the 2 
position of benzofuran 
nucleus was defined as 
R4′ substitution

Fig. 4 Lead structure and the substitution pattern of 2-phen-

ylbenzofuran used in the original series and in the QSAR study
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position of benzofuran (Fig. 4) was taken as the 4th sub-

stitution. The molecules of the series were divided

randomly [39, 40] into training set and test set. The training

set was used to build linear models so that an accurate

relationship could be found between structure and biolog-

ical activity. The test set of six molecules was not used to

develop the regression model but served to check the

predictive power of the developed model.

Table 9 ADME properties of

the 2-phenylbenzofuran

derivatives and designed

compounds

Compounds ADME

weight

ADME hydrogen

bond acceptor

ADME hydrogen

bond donor

ADME log P

2 362.52 3 2 4.1268

4 426.5 3 2 5.58

5 326.38 3 2 4.1788

6 378.46 3 2 4.1665

7 378.46 3 2 4.1665

8 278.34 3 2 1.799

9 362.52 3 2 4.1268

11 278.34 3 2 1.799

12 362.52 3 2 4.1268

14 278.34 3 2 1.799

15 362.52 3 2 4.1268

16 330.42 3 2 2.753

17 308.37 4 2 1.5463

18 392.55 4 2 3.8741

19 360.45 4 2 2.5003

21 378.52 4 3 3.8424

22 346.42 4 3 2.4686

24 394.52 5 4 3.558

26 308.37 4 2 1.5463

27 392.55 4 2 3.8741

29 308.37 4 2 1.5463

31 360.45 4 2 2.5003

32 294.34 4 3 1.5146

33 378.52 4 3 3.8424

34 346.42 4 3 2.4686

35 294.34 4 3 1.5146

36 378.52 4 3 3.8424

37 346.42 4 3 2.4686

38 308.37 4 2 1.5463

39 392.55 4 2 3.8741

41 308.37 4 2 1.5463

43 360.45 4 2 2.5003

44 294.34 4 3 1.5146

45 378.52 4 3 3.8424

46 346.42 4 3 2.4686

47 294.34 4 3 1.5146

48 378.52 4 3 3.8424

49 346.42 4 3 2.4686

50 274.3 5 1 0.5753

51 260.27 5 1 0.2328

52 246.24 5 2 0.2011

53 288.29 6 3 -0.6223

54 288.29 6 3 -0.6223
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Descriptor generation

The numerical descriptors are responsible for encoding

important features of the structure of the molecules. Both

classical and similarity based descriptors were calculated

for each compound in the training set, using the TSAR

software.

Similarity indices

Similarity indices represent a quantitative measure of the

similarity between two molecules on the basis of their size,

shape, electronic distribution, lipid solubility, water solu-

bility, or chemical reactivity [41]. Molecular similarity was

introduced as a concept by Carbo et al. [42]. The use of

Table 10 Structures,

log(1/IC50) values, and various

substitutions defined by TSAR

for MLR and PLS analysis

No. R1 R2 R3 R4 ′  Log 
1/IC50

1 NH2

NH

H H 
HN

H2N
2.52 

2 N
H

NH

H H 
HN

NH
0.90 

3 
N

N
H

H H N

H
N

0.72 

4 
N
H

N

H H N

H
N

0.60 

5 
N

N
H

H H N

H
N

0.21 

6 N
H

N

H H N

H
N

0.91 

7 
N

N
H

H H
N

H
N

0.64 

8 NH2

NH

H H

HN
NH2

1.61 
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Table 10 continued

9 N
H

NH

H H HN

NH

0.32 

10 
N

N
H

H H N

H
N

1.10 

11 H 
NH2

NH
H HN

H2N

2.15 

12 H N
H

NH

H HN

NH

0.82 

13 H 
N

N
H

H N

H
N

0.49 

14 H 
NH2

NH
H 

HN
NH2

1.67 

No. R1 R2 R3  Log 
1/IC50

15 H N
H

NH

H HN

NH

0.27 

16 H 
N

N
H

H N

H
N

0.47 

17 
NH2

NH
H OCH3 HN

H2N

2.22 

18 N
H

NH

H OCH3 HN

NH

1.04 

 R4 ′
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Table 10 continued

19 
N

N
H

H OCH3 N

H
N

0.90 

20 NH2

NH

H OH HN

H2N

2.52 

21 N
H

NH

H OH HN

NH

1.55 

22 
N

N
H

H OH N

H
N

2.39 

23 
NH2

NH
H OH 

HN

H2N

OH

1.74 

No. R1 R2 R3  Log 
1/IC50

24 
N
H

NH

H H HN

NH

OH
1.63 

25 
N

N
H

H OH N

H
N

OH

2.00 

26 
NH2

NH
H H HN

H2N

OCH3

2.52 

27 
N
H

NH

H H HN

NH

OCH3

1.13 

 R4 ′
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Table 10 continued

28 
N

N
H

H H N

H
N

OCH3
0.60 

29 
NH2

NH
H H 

HN
NH2

OCH3

2.69 

30 
N
H

NH

H H HN

NH
OCH3 0.80 

31 
N

N
H

H H 
N

H
N

OCH3

1.56 

32 NH2

NH

H H HN

H2N

OH 2.69 

33 
N
H

NH

H H HN

NH

OH
1.67 

34 
N

N
H

H H N

H
N

OH
2.09 

35 
NH2

NH
H H 

HN
NH2

OH

2.30 

No. R1 R2 R3  Log 
1/IC50

36 
N
H

NH

H H 
HN

NH
OH -0.002 

 R4 ′
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Table 10 continued

37 
N

N
H

H H N

H
N

OH 0.64 

38 H 
NH2

NH
H 

HN

H2N

OCH3
2.52 

No. R1 R2 R3  Log 
1/IC50

39 H 
N
H

NH

H HN

NH

OCH3

1.26 

40 H 
N

N
H

H 
N

H
N

OCH3

1.30 

41 H 
NH2

NH
H 

HN
NH2

OCH3

1.95 

42 H 
N
H

NH

H HN

NH
OCH3 0.031 

43 H 
N

N
H

H 
N

H
N

OCH3
1.76 

44 H 
NH2

NH
H HN

H2N

OH 2.39 

45 H 
N
H

NH

H 
HN

NH

OH

2.04 

46 H 
N

N
H

H N

H
N

OH
1.95 

 R4 ′
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similarity as a 3D QSAR tool was introduced by Good

et al. [43] and has been used by several other groups

[44, 45]. The molecular similarity indices were computed

with the ASP similarity program in the TSAR software.

Among the two approaches (a grid-based method and

Gaussian approximation), the Gaussian approximation was

used for calculating similarity indices because it closely

mirrors that of the grid-based calculations but is much

faster. A Gaussian approximation based N 9 N similarity

matrix was constructed and subjected to data reduction

techniques [46].

Classical descriptors

Initially, 267 classical descriptors belonging to structural,

geometrical, electronic, and hydrophobic classes were

generated for both whole molecules and substituents of

compounds in the training set. The values of descriptors for

every compound were checked to ensure that the value of

each descriptor was calculated for each structure and that

there is sufficient variation in these values [47]. The

descriptors for which values were not calculated or had

constant value for every structure in the data were discarded.

In order to study the data patterns and to reduce the data

redundancy a data reduction was performed.

Variable selection (data reduction)

In order to select the suitable classical and similarity based

descriptors for MLR and PLS analysis, Pearson’s correla-

tion matrix and principal component analysis (PCA) were

performed on the larger number of descriptor pool.

Input variable selection using PCA

PCA [48, 49] is a multivariate data compression method,

which groups the correlated variables and replaces the

original descriptors by a new set called principal compo-

nents (PCs), onto which the data is projected. These PCs

contain most of the variability in the data set, are com-

pletely uncorrelated, and are built as a simple linear

combination of original variables. PCA was performed on

both the similarity matrix and classical descriptors and the

data were subjected to multivariate statistical techniques.

Input variable selection by generating correlation

matrix for classical descriptors

The classical descriptors were selected by correlating each

descriptor with one another using correlation matrix. The

correlation terms involved in the correlation matrix indi-

cate the extent of co-linearity. A term close to 1 indicates

high co-linearity, whereas a value below 0.5 indicates that

no co-linearity exists between the two parameters [50].

Among the highly intercorrelated parameters the one that

showed low correlation with the biological activity (IC50

value) was discarded whereas the other was kept. This

process was repeated for each and every set of two con-

secutive parameters and finally descriptors that were highly

correlated with the biological activity but did not have any

correlation among each other were retained. Six descrip-

tors, Verloop B1 (sub. 4), moment of inertia 3 length

(whole molecule), dipole moment Y components (sub. 3),

dipole moment Z component (sub. 3), log P (whole mol-

ecule), and the sum of E-state values (whole molecule)

Table 10 continued

47 H 
NH2

NH
H 

HN
NH2

OH

1.53 

48 H 
N
H

NH

H HN

NH
OH

-0.70 

49 H 
N

N
H

H N

H
N

OH 1.08 

No. R1 R2 R3  Log 
1/IC50

 R4 ′
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were retrieved that had good correlation with the biological

activity and had minimum intercorrelation among them-

selves. For choosing the most significant descriptors (out of

six) contributing to the anti-trypanosomal activity of

2-phenylbenzofuran derivatives a deletion process was

performed in which each variable in the model was omitted

in turn and the models were generated using the remaining

parameters. Hence after deleting dipole moment Y compo-

nent (sub. 3), dipole moment Z component (sub. 3), and the

sum of E-state indices (whole molecule), the best generated

linear model of MLR included Verloop B1 (sub. 4),

moment of inertia 3 length (whole molecule), and

log P (whole molecule), indicating their major influence on

biological activity.

Model development

After selecting the necessary subsets of descriptors from

PCA and original descriptors, statistical models were gen-

erated for the training set compounds. The relationship

between selected structural parameters and biological

activities was quantified by MLR and PLS implemented in

TSAR 3.3. Values for F-to-enter and F-to-leave were set to 4.

Identification of outliers present in the series is important as

they may lead to a poor result. Data points that cannot be

described using the QSAR equations are referred to as out-

liers [51]. Calculating and plotting the residuals and

standardized residuals helped to find the possibility of having

outliers in our data set. Five compounds (3, 13, 23, 28, and

42) with higher residual values were plotted away from the

regression line and were identified and deleted as outliers.

MLR analysis

MLR calculates an equation describing the relationship

between a single dependent y variable that is the biological

data and several explanatory independent x variables that

are physicochemical parameters. The relationship between

biological activities expressed as log(1/IC50) and PCs and a

reduced set of original descriptors was analyzed statisti-

cally by fitting the data to regression equations consisting

of various combinations of these parameters. The best

model was selected on the basis of various statistical

parameters such as correlation coefficient (r), coefficient of

determination (r2), standard deviation (SD), sequential

Fisher test (F), and test for statistical significance (t).

PLS

PLS analysis calculates equations describing the relation-

ship between one or more dependent variables and a group

of explanatory variables. PLS linear regression is a recent

technique that generalizes and combines features from

PCA and multiple regressions. PLS is a method suitable for

overcoming the problems in MLR related to multicollinear

or overabundant descriptors. To check the robustness and

predictive ability of the models generated using MLR, PLS

analysis was performed.

Model validation

QSAR model validation is an important part of under-

standing statistically robust models capable of making

accurate and reliable predictions of biological activities of

new compounds not present in the data set. The model was

validated on the basis of various statistical parameters such

as fraction of variance (r2), which gives information about

the goodness of fit of a model (for a predictive QSAR

model r2 value should be greater than 0.60 [52, 53]); cross-

validation test (rcv
2 ; for a very robust model its value should

be greater than 0.50); standard deviation (s), which is an

absolute measure of quality of fit of the model (the smaller

the value of s, the better is the QSAR model); and Fischer

statistics (f), which is a measure of the level of statistical

significance of the regression model (the larger the value,

the greater is the probability that the QSAR model is sig-

nificant). Overfitting of the model was also checked in

order to validate the given model. Generally a given model

overfits if it includes more descriptors than required. In

order to avoid overfitting in our model a small number of

descriptors was used for the model development.
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